Q1.
These diagrams are all made of squares.
Look at each diagram.
Put a tick (\boldsymbol{V}) if exactly $\frac{1}{3}$ of it is shaded. Put a cross (\boldsymbol{X}) if it is not.

Q2.
The diagram shows three regular octagons joined together.
There is a dot at the centre of each octagon.

What fraction of the diagram is shaded?

Q3.
Here are five diagrams.
Look at each one.
Put a tick ($\boldsymbol{\checkmark}$) on the diagram if exactly half of it is shaded.
Put a cross (X) if it is not.

Q4.
$\frac{1}{3}$ of this square is shaded.

The same square is used in the diagrams below.
What fraction of this diagram is shaded?

What fraction of this diagram is shaded?

1 mark

Q5.
This diagram shows a shaded rectangle surrounded by squares.

What fraction of the diagram is shaded?

Q6.
A fraction of each shape is shaded.
Match each fraction to the correct place on the number line.
One has been done for you.

$0 \quad 1$

Q7.
Write the missing fraction.

$$
\frac{1}{3}+\frac{1}{4}+\square=1
$$

Q8.

Holly says,
'One-third of this shape is shaded'.
Is Holly correct?
Circle Yes or No.
Yes / No
Explain how you know.

Q9.
Is $\frac{4}{9}$ greater than ${ }^{\frac{1}{3}}$? Circle Yes or No.
Yes / No show how you know.

Is $\frac{4}{9}$ half of $\frac{8}{18}$? Circle Yes or No.

Yes/No

Show how you know.

Q10.

Here are three shapes made from regular hexagons.
Write the fraction of each shape that is shaded.

Q11.
Shade $\frac{1}{4}$ of this shape.

Q12.
Tick (\boldsymbol{V}) each shape that is exactly $\frac{1}{4}$ shaded.

Q13.
Each of these diagrams is divided into equal parts.
Some of the parts are shaded.

A

B

C

D

E
Write the letters of all the diagrams that have exactly $\frac{1}{2}$ shaded.

Which of the diagrams has exactly $\frac{1}{3}$ shaded?

Q14.

Shade $\frac{1}{5}$ of this shape.

Shade more triangles on this shape so that is $\frac{1}{3}$ shaded

Q15.
Each diagram below is divided into equal sections.
Shade three-quarters of each diagram.

Q16.
Here are four fraction cards.
$\frac{3}{4} \quad \frac{5}{8} \quad \frac{6}{12} \quad \frac{7}{16}$

Use any three of the cards to make this correct.

Q17.
Here are some shapes made of squares.
A fraction of each shape is shaded.
Match each shape to its equivalent fraction.
One has been done for you.

M1. Award TWO marks for diagrams ticked or crossed as shown:

Accept alternative unambiguous indications, eg \boldsymbol{Y} or \boldsymbol{N}.
For TWO marks, accept:

If the answer is incorrect, award ONE mark for three diagrams ticked or crossed correctly.

Up to 2

M2. $\frac{1}{6}$
Accept: equivalent fractions, eg $\frac{4}{24}$

M3. Award TWO marks for diagrams ticked or crossed as shown:

If the answer is incorrect, award ONE mark for four diagrams For TWO marks accept:

Up to ${ }^{2}$ Page 10

M4.
(a) $\frac{1}{3}$

Accept equivalent fractions or decimals.
(b) $\frac{1}{9}$

Accept equivalent fractions or decimals.

M5. $\quad \frac{1}{5}$
Accept equivalent fractions, eg $\frac{3}{15}$
Accept 0.2 OR 20\%

M6. Diagram completed correctly as shown:

M7. $\frac{5}{12}$

M8. An explanation which recognises that the shaded area is equivalent to one-third, eg:

- $\frac{2}{6}$ is shaded and that is equivalent to $\frac{1}{3}$,
- ' 2 out of 6 is the same as 1 out of 3 '
- '2 out of 6'
- $\frac{2}{6}$ is shaded and $\frac{4}{6}$ is not shaded, which is the same as $\frac{1}{3}$ shaded and $\frac{2}{3}$ not shaded'
- 'There are 3 squares, and 2 halves are shaded, and 2 halves make one whole'
- 'The two shaded triangles are the same as one square and that is one out of three squares'
- '1 square out of 3 '
- 'If you add the shaded parts together it makes one square'

No mark is awarded for circling 'Yes' alone.
Do not accept vague or incomplete explanations, eg:

- 'It's equivalent to $\frac{1}{3}$,
- $\frac{1}{3}$ is shaded and $\frac{2}{3}$ is not shaded'
- 'The two parts shaded add up to $\frac{1}{3}$ '
- 'Half of 2 squares are shaded'.

If 'No' is circled but a correct, unambiguous explanation is given, then award the mark.

M9. (a) Indicates Yes and gives a correct explanation, eg:

- $\frac{1}{3}=\frac{3}{9}, \frac{3}{9} \frac{4}{9}$

- $\frac{1}{3}$ of 9 is 3 not 4
- $\frac{4}{9}$ should be $\frac{1.333 \ldots}{3}$, not $\frac{1}{3}$
- 0.33...
- $\frac{1}{3}=\frac{4}{12}, \frac{4}{12} \frac{4}{9}$
- $\frac{1}{3}$ of $27=9$ and $\frac{4}{9}$ of $27=12$

Accept minimally acceptable explanation, eg:

- $\frac{3}{9}$
- $\frac{9}{27}, \frac{12}{27}$
- 4 is over a third of 9
- $\frac{1}{3}$ of 9 is 3
- $\frac{4}{9}$ is closer to a half than a third
- $0.33,0.44$
- It is one ninth bigger
- If you divide ${ }^{\frac{4}{9}}$ by a $a^{\frac{1}{3}}$ you get $\frac{4}{3}$
- $\frac{4}{12}$
(b) Indicates No and gives a correct explanation, eg:
- The fractions are equal; if you multiply the numerator and denominator by the same number the fractions are equivalent
- $\frac{4}{9}=\frac{8}{18}$
- $\frac{4}{9} \times 2=\frac{8}{9}$ not $\frac{8}{18}$
- $\frac{8}{18} \div 2=\frac{4}{18}$ which is $\frac{2}{9}$ not $\frac{4}{9}$
- To double the fraction, you don't double the numerator and the denominator, you just double the numerator
- To halve the fraction, you don't halve the denominator, only the numerator

Accept minimally acceptable explanation, eg:

- Equal
- Equivalent
- Same
- $\frac{4}{9}$ is half of $\frac{8}{9}$
- $\frac{4}{18}$ is half of $\frac{8}{18}$
- You only double the top number
- You only halve the top number
! Indicates Yes, or no decision made, but explanation clearly correct
Condone provided the explanation is more than minimal

Do not accept Incomplete explanation, eg

- If you double the top and the bottom number of $\frac{4}{9}$, you

Page 13
get $\frac{8}{18}$

M10. Award TWO marks for three fractions correct as shown:
$\frac{1}{4}$

AND
 $\frac{1}{2}$
 AND
 $\frac{1}{3}$

If the answer is incorrect, award ONE mark for two fractions correct.
Accept equivalent fractions, eg
$\frac{3}{6}$ for $\frac{1}{2}$
$\frac{2}{6}$ for $\frac{1}{3}$
Up to 2

M11. Diagram completed to show three triangles shaded, or equivalent, eg

Accept inaccurate shading provided the intention is clear.

M12.Diagram ticked correctly as shown:

Accept alternative unambiguous indications.

M13.(a) C AND E
Letters may be given in either order.
(b) B

M14.(a) Any two triangles in the shape shaded.
Accept alternative unambiguous indications.
(b) Any two more triangles in the shape shaded.

Accept alternative unambiguous indications.

M15.

Award TWO marks for all three diagrams completed to show three-quarters shaded, e.g.

If the answer is incorrect, award ONE mark for two diagrams correct.
Accept alternative unambiguous indications of parts shaded.

M16.Award ONE mark for any of the following:
$\frac{7}{16}<\frac{6}{12}<\frac{5}{8}$
OR
$\frac{7}{16}<\frac{6}{12}<\frac{3}{4}$
OR
$\frac{7}{16}<\frac{5}{8}<\frac{3}{4}$

OR
$\frac{6}{12}<\frac{5}{8}<\frac{3}{4}$
Accept equivalent fractions correctly ordered, e.g:

$$
\begin{aligned}
& \frac{21}{48}<\frac{24}{48}<\frac{30}{48} \\
& \frac{21}{48}<\frac{24}{48}<\frac{36}{48} \\
& \frac{7}{16}<\frac{10}{16}<\frac{12}{16} \\
& \frac{12}{24}<\frac{15}{24}<\frac{18}{24}
\end{aligned}
$$

M17.Award TWO marks for four shapes matched correctly as shown:

If the answer is incorrect, award ONE mark for three shapes matched correctly.
Lines need not touch shapes or fraction boxes, provided the intention is clear.
Do not credit any shape that has been matched to more than one fraction.

Up to 2

