Multiplication and division vocabulary		
Term	Definition	Example
factor	a number that divides exactly into another number	factors of $12=$ $1,2,3,4,6,12$
common factor	factors of two numbers that are the same	common factors of 8 and $12=1,2,4$
prime number	a number with only 2 factors: 1 and itself	$2,3,5,7,11,13,17,19 \ldots$
composite number	a number with more than two factors	(it has $\begin{gathered}12 \\ 6 \text { factors) }\end{gathered}$
prime factor	a factor that is prime	prime factors of $12=$ 2, 3
multiple	a number in another number's times table	multiples of $9=$ $9,18,27,36$...
common multiple	multiples of two numbers that are the same	common multiples of 4 and $6=12,24 \ldots$
square numbers	the result when a number has been multiplied by itself	$\begin{aligned} & 25\left(5^{2}=5 \times 5\right) \\ & 49\left(7^{2}=7 \times 7\right) \end{aligned}$
cube numbers	the result when a number has been multiplied by itself 3 times	$\begin{gathered} 8\left(2^{3}=2 \times 2 \times 2\right) \\ 27\left(3^{3}=3 \times 3 \times 3\right) \end{gathered}$

Fractions, decimals \& percentages

$1 / 100$	0.01	1%	$\div 100$			
$1 / 20$	0.05	5%	$\div 20$			
$1 / 10$	0.1	10%	$\div 10$			
$1 / 5$	0.2	20%	$\div 5$			
$1 / 4$	0.25	25%	$\div 4$			
$1 / 2$	0.5	50%	$\div 2$			
$3 / 4$	0.75	75%	$\div 4, \times 3$			
1	1	100%	$\div 1$	\quad	full turn	360°
:---:	:---:	:---:				
half turn	180°					
right angle	90°					
acute angle	$<90^{\circ}$					
obtuse angle	$>90^{\circ}$					
reflex angle	$>180^{\circ}$					
angles on a straight line	180°					
angles inside a triangle	180°					
angles inside a quadrilateral	360°					

Shape vocabulary	
perimeter $=$ measure around the edge (circumference $=$ perimeter of a circle)	
horizontal line	parallel lines vertical line perpendicular lines (at right angles)

Measurement conversions			
Month	Days	1 centimetre	10 mm
January	31	1 metre	100 cm
February	28 (29 in leap year)	1 kilometre	$1,000 \mathrm{~m}$
March	31		
April	30	1 mile	1.6 km
May	31	1 kilometre	$0.625(5 / 8)$ mile
June	30		
July	31	1 kilogram	1,000 grams
August	31		
September	30	1 litre	1,000 millilitres
October	31		
November	30		rdinates
December	31		
$\begin{aligned} & 1 \text { year }=365 \text { days }(\approx 52 \text { weeks }) \\ & \text { Leap year }=366 \text { days } \end{aligned}$		(horizontal) (vertical). E.g. (3	irst, then the y axis 4) = go right 3, down 4

3D shapes		square-based pyramid	triangular- based pyramid
faces (the flat sides)	5	4	5
edges	8	6	9
vertices (the points where the edges meet)	5	4	6

Volume = the amount of space a 3D shape takes up, usually measured in cm^{3} or m^{3}

The mean

The mean is a type of average. To find the mean, add up all the numbers and divide by how many there are. E.g. the mean of $4,5,3,4$ is 4 .

$$
\text { (Because } 4+5+3+4=16 \text {, and } 16 \div 4=4 \text {) }
$$

